6.2 C
London
Thursday, December 19, 2024
HomeStatistics TutorialRHow to Use Separate Function in R (With Examples)

How to Use Separate Function in R (With Examples)

Related stories

Learn About Opening an Automobile Repair Shop in India

Starting a car repair shop is quite a good...

Unlocking the Power: Embracing the Benefits of Tax-Free Investing

  Unlocking the Power: Embracing the Benefits of Tax-Free Investing For...

Income Splitting in Canada for 2023

  Income Splitting in Canada for 2023 The federal government’s expanded...

Can I Deduct Home Office Expenses on my Tax Return 2023?

Can I Deduct Home Office Expenses on my Tax...

Canadian Tax – Personal Tax Deadline 2022

  Canadian Tax – Personal Tax Deadline 2022 Resources and Tools...

The separate() function from the tidyr package can be used to separate a data frame column into multiple columns.

This function uses the following basic syntax:

separate(data, col, into, sep)

where:

  • data: Name of the data frame
  • col: Name of the column to separate
  • into: Vector of names for the column to be separated into
  • sep: The value to separate the column at

The following examples show how to use this function in practice.

Example 1: Separate Column into Two Columns

Suppose we have the following data frame in R:

#create data frame
df frame(player=c('A', 'A', 'B', 'B', 'C', 'C'),
                 year=c(1, 2, 1, 2, 1, 2),
                 stats=c('22-2', '29-3', '18-6', '11-8', '12-5', '19-2'))

#view data frame
df

  player year stats
1      A    1  22-2
2      A    2  29-3
3      B    1  18-6
4      B    2  11-8
5      C    1  12-5
6      C    2  19-2

We can use the separate() function to separate the stats column into two new columns called “points” and “assists” as follows:

library(tidyr)

#separate stats column into points and assists columns
separate(df, col=stats, into=c('points', 'assists'), sep='-')

  player year points assists
1      A    1     22       2
2      A    2     29       3
3      B    1     18       6
4      B    2     11       8
5      C    1     12       5
6      C    2     19       2

Example 2: Separate Column into More Than Two Columns

Suppose we have the following data frame in R:

#create data frame
df2 frame(player=c('A', 'A', 'B', 'B', 'C', 'C'),
                 year=c(1, 2, 1, 2, 1, 2),
                 stats=c('22/2/3', '29/3/4', '18/6/7', '11/1/2', '12/1/1', '19/2/4'))

#view data frame
df2

  player year   stats
1      A    1  22/2/3
2      A    2  29/3/4
3      B    1  18/6/7
4      B    2  11/1/2
5      C    1  12/1/1
6      C    2  19/2/4

We can use the separate() function to separate the stats column into three separate columns:

library(tidyr)

#separate stats column into three new columns
separate(df, col=stats, into=c('points', 'assists', 'steals'), sep='/')

  player year points assists steals
1      A    1     22       2      3
2      A    2     29       3      4
3      B    1     18       6      7
4      B    2     11       1      2
5      C    1     12       1      1
6      C    2     19       2      4

Additional Resources

The goal of the tidyr package is to create “tidy” data, which has the following characteristics:

  • Every column is a variable.
  • Every row is an observation.
  • Every cell is a single value.

The tidyr package uses four core functions to create tidy data:

1. The spread() function.

2. The gather() function.

3. The separate() function.

4. The unite() function.

If you can master these four functions, you will be able to create “tidy” data from any data frame.

Subscribe

- Never miss a story with notifications

- Gain full access to our premium content

- Browse free from up to 5 devices at once

Latest stories