You can use the following methods to select rows without NaN values in pandas:
Method 1: Select Rows without NaN Values in All Columns
df[~df.isnull().any(axis=1)]
Method 2: Select Rows without NaN Values in Specific Column
df[~df['this_column'].isna()]
The following examples show how to use each method in practice with the following pandas DataFrame:
import pandas as pd import numpy as np #create DataFrame df = pd.DataFrame({'team': ['A', 'B', 'C', 'D', 'E', 'F', 'G'], 'points': [np.nan, 12, 15, 25, np.nan, 22, 30], 'assists': [4, np.nan, 5, 9, 12, 14, 10]}) #view DataFrame print(df) team points assists 0 A NaN 4.0 1 B 12.0 NaN 2 C 15.0 5.0 3 D 25.0 9.0 4 E NaN 12.0 5 F 22.0 14.0 6 G 30.0 10.0
Example 1: Select Rows without NaN Values in All Columns
We can use the following syntax to select rows without NaN values in every column of the DataFrame:
#create new DataFrame that only contains rows without NaNs no_nans = df[~df.isnull().any(axis=1)] #view results print(no_nans) team points assists 2 C 15.0 5.0 3 D 25.0 9.0 5 F 22.0 14.0 6 G 30.0 10.0
Notice that each row in the resulting DataFrame contains no NaN values in any column.
Example 2: Select Rows without NaN Values in Specific Column
We can use the following syntax to select rows without NaN values in the points column of the DataFrame:
#create new DataFrame that only contains rows without NaNs in points column no_points_nans = df[~df['points'].isna()] #view results print(no_points_nans) team points assists 1 B 12.0 NaN 2 C 15.0 5.0 3 D 25.0 9.0 5 F 22.0 14.0 6 G 30.0 10.0
Notice that each row in the resulting DataFrame contains no NaN values in the points column.
There is one row with a NaN value in the assists column, but the row is kept in the DataFrame since the value in the points column of that row is not NaN.
Additional Resources
The following tutorials explain how to perform other common tasks in pandas:
Pandas: How to Drop Rows with NaN Values
Pandas: How to Replace NaN Values with String
Pandas: How to Fill NaN Values with Mean