3.1 C
London
Friday, December 20, 2024
HomePandas in PythonDataFrame Functions in PythonConvert Pandas DataFrame to NumPy Array (With Examples)

Convert Pandas DataFrame to NumPy Array (With Examples)

Related stories

Learn About Opening an Automobile Repair Shop in India

Starting a car repair shop is quite a good...

Unlocking the Power: Embracing the Benefits of Tax-Free Investing

  Unlocking the Power: Embracing the Benefits of Tax-Free Investing For...

Income Splitting in Canada for 2023

  Income Splitting in Canada for 2023 The federal government’s expanded...

Can I Deduct Home Office Expenses on my Tax Return 2023?

Can I Deduct Home Office Expenses on my Tax...

Canadian Tax – Personal Tax Deadline 2022

  Canadian Tax – Personal Tax Deadline 2022 Resources and Tools...

You can use the following syntax to convert a pandas DataFrame to a NumPy array:

df.to_numpy()

The following examples show how to use this syntax in practice.

Example 1: Convert DataFrame with Same Data Types

The following code shows how to convert a pandas DataFrame to a NumPy array when each of the columns in the DataFrame is the same data type:

import pandas as pd

#create data frame
df1 = pd.DataFrame({'rebounds': [7, 7, 8, 13, 7, 4],
                    'points': [5, 7, 7, 9, 12, 9],
                    'assists': [11, 8, 10, 6, 6, 5]})

#view data frame
print(df1)

   rebounds  points  assists
0         7       5       11
1         7       7        8
2         8       7       10
3        13       9        6
4         7      12        6
5         4       9        5

#convert DataFrame to NumPy array
new = df1.to_numpy()

#view NumPy array
print(new)

[[ 7  5 11]
 [ 7  7  8]
 [ 8  7 10]
 [13  9  6]
 [ 7 12  6]
 [ 4  9  5]]

#confirm that new is a NumPy array
print(type(new))

 

#view data type
print(new.dtype)

int64

The Numpy array has a data type of int64 since each column in the original pandas DataFrame was an integer.

Example 2: Convert DataFrame with Mixed Data Types

The following code shows how to convert a pandas DataFrame to a NumPy array when the columns in the DataFrame are not all the same data type:

import pandas as pd

#create data frame
df2 = pd.DataFrame({'player': ['A', 'B', 'C', 'D', 'E', 'F'],
                    'points': [5, 7, 7, 9, 12, 9],
                    'assists': [11, 8, 10, 6, 6, 5]})

#view data frame
print(df2)

  player  points  assists
0      A       5       11
1      B       7        8
2      C       7       10
3      D       9        6
4      E      12        6
5      F       9        5

#convert DataFrame to NumPy array
new = df2.to_numpy()

#view NumPy array
print(new)

[['A' 5 11]
 ['B' 7 8]
 ['C' 7 10]
 ['D' 9 6]
 ['E' 12 6]
 ['F' 9 5]]

#confirm that new is a NumPy array
print(type(new))

 

#view data type
print(new.dtype)

object

The Numpy array has a data type of object since not every column in the original pandas DataFrame was the same data type.

Example 3: Convert DataFrame & Set NA Values

The following code shows how to convert a pandas DataFrame to a NumPy array and specify the values to be set for any NA values in the original DataFrame:

import pandas as pd

#create data frame
df3 = pd.DataFrame({'player': ['A', 'B', pd.NA, 'D', 'E', 'F'],
                    'points': [5, 7, pd.NA, 9, pd.NA, 9],
                    'assists': [11, 8, 10, 6, 6, 5]})

#view data frame
print(df3)

  player points  assists
0      A      5       11
1      B      7        8
2             10
3      D      9        6
4      E           6
5      F      9        5

#convert DataFrame to NumPy array
new = df3.to_numpy(na_value='none')

#view NumPy array
print(new)

[['A' 5 11]
 ['B' 7 8]
 ['none' 'none' 10]
 ['D' 9 6]
 ['E' 'none' 6]
 ['F' 9 5]]

#confirm that new is a NumPy array
print(type(new))

 

#view data type
print(new.dtype)

object

Additional Resources

How to Create a Pandas DataFrame from a NumPy Array
How to Convert a List to a DataFrame in Pandas
How to Convert a DataFrame to List in Pandas

Subscribe

- Never miss a story with notifications

- Gain full access to our premium content

- Browse free from up to 5 devices at once

Latest stories