16.8 C
London
Sunday, March 9, 2025
HomePandas in PythonGeneral Functions in PythonHow to Fill NA Values for Multiple Columns in Pandas

How to Fill NA Values for Multiple Columns in Pandas

Related stories

Learn About Opening an Automobile Repair Shop in India

Starting a car repair shop is quite a good...

Unlocking the Power: Embracing the Benefits of Tax-Free Investing

  Unlocking the Power: Embracing the Benefits of Tax-Free Investing For...

Income Splitting in Canada for 2023

  Income Splitting in Canada for 2023 The federal government’s expanded...

Can I Deduct Home Office Expenses on my Tax Return 2023?

Can I Deduct Home Office Expenses on my Tax...

Canadian Tax – Personal Tax Deadline 2022

  Canadian Tax – Personal Tax Deadline 2022 Resources and Tools...

The pandas fillna() function is useful for filling in missing values in columns of a pandas DataFrame.

This tutorial provides several examples of how to use this function to fill in missing values for multiple columns of the following pandas DataFrame:

import pandas as pd
import numpy as np

#create DataFrame
df = pd.DataFrame({'team': ['A', np.nan, 'B', 'B', 'B', 'C', 'C', 'C'],
                   'points': [25, np.nan, 15, np.nan, 19, 23, 25, 29],
                   'assists': [5, 7, 7, 9, 12, 9, np.nan, 4],
                   'rebounds': [11, 8, 10, 6, 6, 5, 9, 12]})

#view DataFrame
print(df)

  team  points  assists  rebounds
0    A    25.0      5.0        11
1  NaN     NaN      7.0         8
2    B    15.0      7.0        10
3    B     NaN      9.0         6
4    B    19.0     12.0         6
5    C    23.0      9.0         5
6    C    25.0      NaN         9
7    C    29.0      4.0        12

Example 1: Fill in Missing Values of All Columns

The following code shows how to fill in missing values with a zero for all columns in the DataFrame:

#replace all missing values with zero
df.fillna(value=0, inplace=True)

#view DataFrame
print(df) 

  team  points  assists  rebounds
0    A    25.0      5.0        11
1    0     0.0      7.0         8
2    B    15.0      7.0        10
3    B     0.0      9.0         6
4    B    19.0     12.0         6
5    C    23.0      9.0         5
6    C    25.0      0.0         9
7    C    29.0      4.0        12

Example 2: Fill in Missing Values of Multiple Columns

The following code shows how to fill in missing values with a zero for just the points and assists columns in the DataFrame:

#replace missing values in points and assists columns with zero
df[['points', 'assists']] = df[['points', 'assists']].fillna(value=0)

#view DataFrame
print(df) 

  team  points  assists  rebounds
0    A    25.0      5.0        11
1  NaN     0.0      7.0         8
2    B    15.0      7.0        10
3    B     0.0      9.0         6
4    B    19.0     12.0         6
5    C    23.0      9.0         5
6    C    25.0      0.0         9
7    C    29.0      4.0        12

Example 3: Fill in Missing Values of Multiple Columns with Different Values

The following code shows how to fill in missing values in three different columns with three different values:

#replace missing values in three columns with three different values
df.fillna({'team':'Unknown', 'points': 0, 'assists': 'zero'}, inplace=True)

#view DataFrame
print(df)

      team  points assists  rebounds
0        A    25.0       5        11
1  Unknown     0.0       7         8
2        B    15.0       7        10
3        B     0.0       9         6
4        B    19.0      12         6
5        C    23.0       9         5
6        C    25.0    zero         9
7        C    29.0       4        12

Notice that each of the missing values in the three columns were replaced with some unique value.

Subscribe

- Never miss a story with notifications

- Gain full access to our premium content

- Browse free from up to 5 devices at once

Latest stories