29.3 C
London
Thursday, June 19, 2025
HomePythonDescriptive Statistics in PythonHow to Perform Data Binning in Python (With Examples)

How to Perform Data Binning in Python (With Examples)

Related stories

Learn About Opening an Automobile Repair Shop in India

Starting a car repair shop is quite a good...

Unlocking the Power: Embracing the Benefits of Tax-Free Investing

  Unlocking the Power: Embracing the Benefits of Tax-Free Investing For...

Income Splitting in Canada for 2023

  Income Splitting in Canada for 2023 The federal government’s expanded...

Can I Deduct Home Office Expenses on my Tax Return 2023?

Can I Deduct Home Office Expenses on my Tax...

Canadian Tax – Personal Tax Deadline 2022

  Canadian Tax – Personal Tax Deadline 2022 Resources and Tools...

You can use the following basic syntax to perform data binning on a pandas DataFrame:

import pandas as pd

#perform binning with 3 bins
df['new_bin'] = pd.qcut(df['variable_name'], q=3)

The following examples show how to use this syntax in practice with the following pandas DataFrame:

import pandas as pd

#create DataFrame
df = pd.DataFrame({'points': [4, 4, 7, 8, 12, 13, 15, 18, 22, 23, 23, 25],
                   'assists': [2, 5, 4, 7, 7, 8, 5, 4, 5, 11, 13, 8],
                   'rebounds': [7, 7, 4, 6, 3, 8, 9, 9, 12, 11, 8, 9]})

#view DataFrame
print(df)

    points  assists  rebounds
0        4        2         7
1        4        5         7
2        7        4         4
3        8        7         6
4       12        7         3
5       13        8         8
6       15        5         9
7       18        4         9
8       22        5        12
9       23       11        11
10      23       13         8
11      25        8         9

Example 1: Perform Basic Data Binning

The following code shows how to perform data binning on the points variable using the qcut() function with specific break marks:

#perform data binning on points variable
df['points_bin'] = pd.qcut(df['points'], q=3)

#view updated DataFrame
print(df)

    points  assists  rebounds        points_bin
0        4        2         7   (3.999, 10.667]
1        4        5         7   (3.999, 10.667]
2        7        4         4   (3.999, 10.667]
3        8        7         6   (3.999, 10.667]
4       12        7         3  (10.667, 19.333]
5       13        8         8  (10.667, 19.333]
6       15        5         9  (10.667, 19.333]
7       18        4         9  (10.667, 19.333]
8       22        5        12    (19.333, 25.0]
9       23       11        11    (19.333, 25.0]
10      23       13         8    (19.333, 25.0]
11      25        8         9    (19.333, 25.0]

Notice that each row of the data frame has been placed in one of three bins based on the value in the points column.

We can use the value_counts() function to find how many rows have been placed in each bin:

#count frequency of each bin
df['points_bin'].value_counts()

(3.999, 10.667]     4
(10.667, 19.333]    4
(19.333, 25.0]      4
Name: points_bin, dtype: int64

We can see that each bin contains 4 observations.

Example 2: Perform Data Binning with Specific Quantiles

We can also perform data binning by using specific quantiles:

#perform data binning on points variable with specific quantiles
df['points_bin'] = pd.qcut(df['points'], q=[0, .2, .4, .6, .8, 1])

#view updated DataFrame
print(df)

    points  assists  rebounds    points_bin
0        4        2         7  (3.999, 7.2]
1        4        5         7  (3.999, 7.2]
2        7        4         4  (3.999, 7.2]
3        8        7         6   (7.2, 12.4]
4       12        7         3   (7.2, 12.4]
5       13        8         8  (12.4, 16.8]
6       15        5         9  (12.4, 16.8]
7       18        4         9  (16.8, 22.8]
8       22        5        12  (16.8, 22.8]
9       23       11        11  (22.8, 25.0]
10      23       13         8  (22.8, 25.0]
11      25        8         9  (22.8, 25.0]

Example 3: Perform Data Binning with Labels

We can also perform data binning by using specific quantiles and specific labels:

#perform data binning on points variable with specific quantiles and labels
df['points_bin'] = pd.qcut(df['points'],
                           q=[0, .2, .4, .6, .8, 1],
                           labels=['A', 'B', 'C', 'D', 'E'])

#view updated DataFrame
print(df)

    points  assists  rebounds points_bin
0        4        2         7          A
1        4        5         7          A
2        7        4         4          A
3        8        7         6          B
4       12        7         3          B
5       13        8         8          C
6       15        5         9          C
7       18        4         9          D
8       22        5        12          D
9       23       11        11          E
10      23       13         8          E
11      25        8         9          E

Notice that each row has been assigned a bin based on the value of the points column and the bins have been labeled using letters.

Additional Resources

The following tutorials explain how to perform other common tasks in pandas:

Pandas: How to Use value_counts() Function
Pandas: How to Create Pivot Table with Count of Values
Pandas: How to Count Occurrences of Specific Value in Column

Subscribe

- Never miss a story with notifications

- Gain full access to our premium content

- Browse free from up to 5 devices at once

Latest stories