16.6 C
London
Thursday, July 4, 2024
HomeTI-84Probability Distributions in TI-84How to Calculate Binomial Probabilities on a TI-84 Calculator

How to Calculate Binomial Probabilities on a TI-84 Calculator

Related stories

Learn About Opening an Automobile Repair Shop in India

Starting a car repair shop is quite a good...

Unlocking the Power: Embracing the Benefits of Tax-Free Investing

  Unlocking the Power: Embracing the Benefits of Tax-Free Investing For...

Income Splitting in Canada for 2023

  Income Splitting in Canada for 2023 The federal government’s expanded...

Can I Deduct Home Office Expenses on my Tax Return 2023?

Can I Deduct Home Office Expenses on my Tax...

Canadian Tax – Personal Tax Deadline 2022

  Canadian Tax – Personal Tax Deadline 2022 Resources and Tools...

The binomial distribution is one of the most commonly used distributions in all of statistics. This tutorial explains how to use the following functions on a TI-84 calculator to find binomial probabilities:

binompdf(n, p, x) returns the probability associated with the binomial pdf.

binomcdf(n, p, x) returns the cumulative probability associated with the binomial cdf.

where:

  • = number of trials
  • = probability of success on a given trial
  • = total number of successes

Both of these functions can be accessed on a TI-84 calculator by pressing 2nd and then pressing vars. This will take you to a DISTR screen where you can then use binompdf() and binomcdf():

Binomial probabilities in TI-84

The following examples illustrate how to use these functions to answer different questions.

Example 1: Binomial probability of exactly x successes

Question: Nathan makes 60% of his free-throw attempts. If he shoots 12 free throws, what is the probability that he makes exactly 10?

Answer: Use the function binomialpdf(n, p, x):

binomialpdf(12, .60, 10) = 0.0639

Example 2: Binomial probability of less than x successes

Question: Nathan makes 60% of his free-throw attempts. If he shoots 12 free throws, what is the probability that he makes less than 10?

Answer: Use the function binomialcdf(n, p, x-1):

binomialcdf(12, .60, 9) = 0.9166

Example 3: Binomial probability of at most x successes

Question: Nathan makes 60% of his free-throw attempts. If he shoots 12 free throws, what is the probability that he makes at most 10?

Answer: Use the function binomialcdf(n, p, x):

binomialcdf(12, .60, 10) = 0.9804

Example 4: Binomial probability of more than x successes

Question: Nathan makes 60% of his free-throw attempts. If he shoots 12 free throws, what is the probability that he makes more than 10?

Answer: Use the function 1 – binomialcdf(n, p, x):

1 – binomialcdf(12, .60, 10) = 0.0196

Example 5: Binomial probability of at least x successes

Question: Nathan makes 60% of his free-throw attempts. If he shoots 12 free throws, what is the probability that he makes more than 10?

Answer: Use the function 1 – binomialcdf(n, p, x-1):

1 – binomialcdf(12, .60, 9) = 0.0834

Subscribe

- Never miss a story with notifications

- Gain full access to our premium content

- Browse free from up to 5 devices at once

Latest stories