4.5 C
London
Thursday, December 19, 2024
HomePandas in PythonGeneral Functions in PythonHow to Select Rows without NaN Values in Pandas

How to Select Rows without NaN Values in Pandas

Related stories

Learn About Opening an Automobile Repair Shop in India

Starting a car repair shop is quite a good...

Unlocking the Power: Embracing the Benefits of Tax-Free Investing

  Unlocking the Power: Embracing the Benefits of Tax-Free Investing For...

Income Splitting in Canada for 2023

  Income Splitting in Canada for 2023 The federal government’s expanded...

Can I Deduct Home Office Expenses on my Tax Return 2023?

Can I Deduct Home Office Expenses on my Tax...

Canadian Tax – Personal Tax Deadline 2022

  Canadian Tax – Personal Tax Deadline 2022 Resources and Tools...

You can use the following methods to select rows without NaN values in pandas:

Method 1: Select Rows without NaN Values in All Columns

df[~df.isnull().any(axis=1)]

Method 2: Select Rows without NaN Values in Specific Column

df[~df['this_column'].isna()]

The following examples show how to use each method in practice with the following pandas DataFrame:

import pandas as pd
import numpy as np

#create DataFrame
df = pd.DataFrame({'team': ['A', 'B', 'C', 'D', 'E', 'F', 'G'],
                   'points': [np.nan, 12, 15, 25, np.nan, 22, 30],
                   'assists': [4, np.nan, 5, 9, 12, 14, 10]})

#view DataFrame
print(df)

  team  points  assists
0    A     NaN      4.0
1    B    12.0      NaN
2    C    15.0      5.0
3    D    25.0      9.0
4    E     NaN     12.0
5    F    22.0     14.0
6    G    30.0     10.0

Example 1: Select Rows without NaN Values in All Columns

We can use the following syntax to select rows without NaN values in every column of the DataFrame:

#create new DataFrame that only contains rows without NaNs
no_nans = df[~df.isnull().any(axis=1)]

#view results
print(no_nans)

  team  points  assists
2    C    15.0      5.0
3    D    25.0      9.0
5    F    22.0     14.0
6    G    30.0     10.0   

Notice that each row in the resulting DataFrame contains no NaN values in any column.

Example 2: Select Rows without NaN Values in Specific Column

We can use the following syntax to select rows without NaN values in the points column of the DataFrame:

#create new DataFrame that only contains rows without NaNs in points column
no_points_nans = df[~df['points'].isna()]

#view results
print(no_points_nans)

  team  points  assists
1    B    12.0      NaN
2    C    15.0      5.0
3    D    25.0      9.0
5    F    22.0     14.0
6    G    30.0     10.0

Notice that each row in the resulting DataFrame contains no NaN values in the points column.

There is one row with a NaN value in the assists column, but the row is kept in the DataFrame since the value in the points column of that row is not NaN.

Additional Resources

The following tutorials explain how to perform other common tasks in pandas:

Pandas: How to Drop Rows with NaN Values
Pandas: How to Replace NaN Values with String
Pandas: How to Fill NaN Values with Mean

Subscribe

- Never miss a story with notifications

- Gain full access to our premium content

- Browse free from up to 5 devices at once

Latest stories